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Cosmological stabilization of moduli with steep potentials
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A scenario which overcomes the well-known cosmological overshoot problem associated with
stabilizing moduli with steep potentials in string theory is proposed. Our proposal relies on the fact
that moduli potentials are very steep and that generically their kinetic energy quickly becomes
dominant. However, moduli kinetic energy redshifts faster than other sources when the universe
expands. So, if any additional sources are present, even in very small amounts, they will inevitably
become dominant. We show that in this case cosmic friction allows the dissipation of the large amount
of moduli kinetic energy that is required for the field to be able to find an extremely shallow minimum.
We present the idea using analytic methods and verify with some numerical examples.
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L. INTRODUCTION

Let us start with a brief review of the framework in
which the problem of stabilizing string moduli in the
perturbative outer region of moduli space, where the
string coupling is weak and/or the volume of the compact
dimensions is large, is posed.

Realistic models, for example, in flux compactifica-
tions of string theory, usually include an effective N =
1 supergravity (SUGRA) theory below the string scale

M = 10~% (our conventions are such that M, = ——— =

/887Gy
1.2 X 108 GeV = 1) and supersymmetry (SUSY) break-

ing in some hidden sector at an intermediate scale M; =
1077, General arguments based on symmetries show that
the moduli superpotential must be a sum of exponentials
in the moduli and perhaps an additional constant. These
exponentials could be generated by stringy or field theo-
retic nonperturbative effects.

In this framework, a typical potential for moduli fields
o; has the N = 1 SUGRA form:

Vsucra = eX(KTF;F; — 3|W|?), ()
and a typical superpotential has the form:

W(o) = ZAie’“"", 2

where K/ is the inverse metric derived from the Kahler
potential K and F; = 9;W + 9,KW is the Kahler deriva-
tive. Here we will consider a situation where all but one of
the moduli have been stabilized at the string scale so that
we can focus on the dynamics of one light modulus o as
in the recent work of Kachru er al. (KKLT)[1].

The Kahler potential of moduli in the perturbative
region is typically logarithmic in the fields, so that in
terms of a canonically normalized component field ¢ the
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potential involves exponentials of exponentials. An im-
portant feature of such potentials is that they vanish or
approach a finite constant when ¢ — oo. This corre-
sponds to decompactification if ¢ is the volume modulus
and zero coupling if ¢ is the effective dilaton. This is the
well-known Dine-Seiberg problem [2]. Therefore, if the
potential has a minimum, it needs to be separated from
the asymptotic region by a potential barrier.

Realistic models need some fine-tuning of parameters.
SUSY breaking in the observable sector at the TeV scale
requires that at the minimum of the potential F;, =
M? = O(107'*). In addition, if one assumes that the
recent cosmological observations indeed indicate that
the cosmological constant (CC) is nonvanishing then at
the minimum Vg, = 0(107'2)>0', so |Fp,l =
BIW,i| + 0(107129). A stable minimum further re-
quires tuning of at least four parameters to prevent ta-
chyonic directions. Until recently it was very hard to find
a single working model because the framework and pa-
rameters were too constrained. Now, with the develop-
ment of models based on flux compactifications and the
understanding of their vast parameter space, the discret-
uum, it has become possible to find models with minima
in the outer region of moduli space [1].

We are interested in estimating the height of the barrier
that separates the minimum of the potential from the
asymptotic region where the potential vanishes or ap-
proaches a constant. Let us assume that at some value
& min the potential has a true minimum. Since each ex-
ponential term is smaller in absolute value for ¢ > ¢ in,
we can generically expect that for ¢ > ¢ pin, |F| < |Frinl,
and |W| <|Wg,| so that the height of the separating
barrier is at most limited by the intermediate scale
Vinax ~ M7 = 1072 If no further tuning is performed
the height of the barrier is much lower than this estimate.
Typical moduli potentials are therefore steep and have a

'"This assumption will not be very important for us. All our
considerations go through almost unmodified if V;, = 0.
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very shallow minimum, when a stable one exists. A
typical steep moduli potential with a shallow minimum
is shown in Fig. 1.

If one considers time-dependent solutions, one encoun-
ters a cosmological version of the Dine-Seiberg problem,
first discussed by Brustein and Steinhardt [3]. If the
moduli start from a generic point on the potential they
are expected to reach the outer region of moduli space by
classically rolling towards the asymptotic region. If they
start to the left of the minimum, they will roll over the
shallow barrier, and if they start to the right of the
barrier, they will never reach the minimum and roll to
the asymptotic outer region. To avoid this without addi-
tional sources, such as radiation, the initial position of the
field, ¢, has to be such that the initial height of the field,
V(¢y), is at most an order of magnitude larger than the
height of the barrier. Thus getting a bound solution re-
quires fine-tuning of initial conditions to a very high
accuracy. In addition, the steep potential inhibits the
possibility of inflation while the moduli are rolling, since
moduli kinetic energy tends to dominate the energy
budget of the universe. The consideration of time-
dependent solutions thus leads to additional criteria of
stability of moduli beyond the standard static stability
criteria, and therefore leads to additional requirements
and constraints beyond the standard criteria which guar-
antee the absence of tachyonic directions. Such argu-
ments have led us to propose previously that the most
likely place for moduli stabilization is the central region
of moduli space [4].

Several previous attempts to resolve the cosmological
stability of moduli in general, and, in particular, the
cosmological overshoot problem, have been made.
Banks et al have emphasized the role of the nonzero
modes [5] and have noticed that they redshift slower than
zero modes. Dine [6] noticed the possible role of such
slower redshift in stabilizing moduli. Barriero et al [7]
discovered that the presence of additional sources helps to
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FIG. 1. A typical moduli potential. The region of the shallow

minimum had to be magnified by 26 orders of magnitude so
that it can be seen. The vertical axis is in units of M‘},, and the
horizontal axis is in units of M,.
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relax the problem. Furthermore Huey er al [8] deter-
mined that if the moduli receive some specific tempera-
ture corrections then the other sources (i.e., radiation)
could be much more effective. We will comment on this
further below. Of course all these discussions were made
in the context of then known string models which were
much more constrained than the models that we have now.

Our proposed resolution relies on the existence of other
sources, for example, a gas of relativistic particles: radia-
tion. The nature of the additional sources and their energy
density is not particularly important to us. A key fact that
is crucial to the scenario that we propose is that kinetic
energy (KE) in an expanding universe redshifts at the
fastest rate of all known sources. As the field rolls on its
steep potential its KE builds up and very quickly leads to
KE dominance. Since KE redshifts faster than the other
sources, the additional sources will eventually become the
dominant energy component. While these sources domi-
nate, they create a large amount of cosmic friction which
dissipates a large amount of energy, allows the field to
gently land into the basin of attraction of the shallow
minimum, and to eventually settle down at the minimum.
While these additional sources dominate, the field moves
only a finite amount.”

We do not rely on additional temperature dependent
coupling beyond cosmic friction. An example of such
coupling is 72¢?2. In fact, in the particular example that
we use to illustrate our idea we assume that they are
absent. If such couplings exist (as assumed by Huey
et al. [8]) they could further help in relaxing the con-
straints on moduli evolution. However, it has been argued
that high temperature effects do not modify the form of
the potential of string theoretic moduli [12]. More re-
cently, extending previous calculations to higher order,
and considering heterotic moduli that are not in thermal
equilibrium, it was shown in [13] that corrections pro-
portional to T* could change the potential in the vicinity
of the minimum in a significant way. These corrections
affect the evolution of the moduli mostly near the shallow
minimum.

Since our main goal here is to explain our idea and
show that it can be realized rather than to explore in a
general and systematic way the various possibilities and
caveats, we concentrate on some explicit examples that
allow us to discuss the basic argument. We will present a
systematic search in a forthcoming publication. In Sec. IT
we use approximate analytic solutions to study modular
cosmology with sources, and in Sec. III we verify nu-
merically that our approximations and quantitative esti-
mates are valid. Sec. IV contains our conclusions and a
brief description of possible extensions of our scenario.

>This fact was noticed by previous authors in a different
context [9,10].

*Similar phases of moduli evolution were discussed in a
different context in [11].
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II. MODULAR COSMOLOGY IN THE
PRESENCE OF SOURCES

We will discuss a specific model to expose the idea on
which our proposal is based and to explain its basic
ingredients. We consider a cosmology with a single field
that has a potential of the form shown in Fig. 1. The field
is assumed to start in the steep region of the potential.
Some amount of radiation in a thermal state (with con-
stant entropy so that 7 ~ 1/a) is also assumed to be
present p,,q = CT* = Z—i where C and c are constants, T
is the temperature and a is the Friedman-Robertson-
Walker (FRW) scale factor. We further assume for sim-
plicity a spatially flat universe. As we have explained, our
proposal is not particularly sensitive to the nature of the
additional sources. In fact all that is required is some
additional source that redshifts slower than kinetic en-
ergy (see below). Here we will just incorporate radia-
tion—in a later paper we will consider more general
sources in detail. The qualitative features that we wish
to illustrate will however remain the same.

We do not discuss here the evolution prior to the epoch
in which we can treat the effective dynamics as a single
scalar field in a cosmological background, or whether the
universe starts in a quantum region. In both of these cases
the universe would arrive at a starting point that is
similar to the one that we assume. Such initial conditions
can be arrived at in different ways. For example, a short
period of inflation, a phase of so-called pre-big bang
evolution, or nucleation from nothing.

The equations of motion that we need to solve are
therefore

2

H? = %[; V() + ﬂ

" . 1%
b +3HG + 50 =0
3)

Here a dot represents a derivative with respect to time,
and H is the Hubble parameter H = d/a.

Our scenario includes four distinct epochs that are
described below. Each epoch starts with some specific
initial values for the Hubble parameter and the field and
its derivatives. The end values of the previous epoch
provide initial values for the subsequent epoch. For def-
initeness, at the end of stage i we denote the values of the
relevant variables by the subscript i so for example ¢, is
the time at which epoch number two ends.

(a) Epoch one: Potential domination

The field starts with zero initial velocity and a
large potential energy on the steep part of the
potential. The universe expands at a fast rate. If a
substantial amount of radiation (or other sources)
is initially present, the radiation energy density
quickly redshifts as a~*, and the main source of
energy becomes the potential energy of the field.

The equations of motion can be approximated by
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1% 14
+—=0 H= - 4
¢ P 3 “)
The energy E = %2 + V(¢) is conserved in this
epoch so all the potential energy is converted
into the field’s kinetic energy (KE).
The solution of the approximate Eqgs. (4) with the
initial conditions at 1 =0, ¢ = ¢, V() = Vj,
and ¢ = 0 is the following,
. d
¢ =2[Vo — V()] t=[—¢
2[Vy = V(4)]

1 (¢ doV(P) ®)

Ina=—

N ¢o Vo — V(d)

The velocity of the field at the end of this epoch

b1 =+2[Vo — V(é))] (6)

can be quite large if the potential is steep V >
V(¢,), and the KE of the field becomes the domi-
nant energy component.

(b) Epoch two: Kinetic energy domination

The equations of motion in this epoch can be
approximated by

¢ +3Hp =0 H? =14 (7)

In epoch two the equation of motion for ¢ can be
implicitly solved ¢ = ¢,a’/a’, implying that
KE =1 $? redshifts quickly KE = 1 ¢1a$/a®.

The solution of the approximate Egs. (7) with the
initial conditions at t=1,, ¢ = ¢,, and ¢ =
é, = 2[Vy — V(¢))], given in Eq. (6) is the fol-

lowing,

b— ¢ = \Eln[\/gél(t — 1)+ 1:|
3 1/3
a(t) = |:\£a{’d'),(t — 1)+ a{| .

We can relate the amount of KE dissipation to the
displacement in the field during this epoch

ln<z—§> =V6(¢ — ¢1), 9)

which means that to dissipate a few tens of orders
of magnitude in KE, as required, the field needs to
move quite a bit in (reduced) Planck units to the
extreme outer region of moduli space. If the field
moves a several Planck lengths, as is the case in
models that we have considered, then only a few
orders of magnitude of KE are dissipated, approxi-
mately 1 order of magnitude per planck length
displacement of the field.

®)
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As the universe expands, both the KE and the
radiation energy density redshift. Since the radia-
tion redshifts at a slower pace, it will eventually
“catch up” with the KE no matter how small its
initial value. A possibility is that the potential
energy will become dominant before the radiation.
Whether this happens or not depends on the details
of the model. In the successful cases (in the case of
steep potentials) the radiation becomes dominant
first.
(c) Epoch three: Radiation domination

Epoch two leads to a radiation dominated epoch
when the radiation “‘catches up” with the KE,

(prad)Z > (KE)Z’

¢ o4l
—_ > — —. 10
a‘zt 2 a§ (10)

Ig epoch three the KE continues to redshift as K =
5t —+, and the expansion of the universe is faster,
hence in this epoch KE is dissipated in a more
efficient way.

The equations of motion in epoch three can be

approximated by

. . , 1 c?
¢ +3Hp =0 H =-—. an
3a
The solution of Egs. (11) is given by
2¢
= |[—=@—1)+ad
a \/—( 2) az (12)
¢ E-n)+a

The displacement of the field during this epoch can
be expressed after some algebra as follows:

NG (KE)z( @>5J6, (13)

¢ = (Praa)2 a
Therefore, even if this epoch continues indefinitely
the field will only move a finite distance [9,10]. KE
on the other hand, continues to redshift as 1/a®, so
contrary to epoch 2, the field can dissipate a lot of
energy while staying almost constant.

(d) Epoch four: Potential domination
Since the radiation energy density redshifts
quickly, eventually, the potential energy density
no matter how small, will come to dominate
when V(o) > Z—i In this epoch the equations of
motion can again be approximated by

\% |4
¢+2—¢—0 H=\g. (14)

At this point the solution of this system depends on
the value of ¢, and whether it ended up in the basin
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of attraction of a minimum, beyond the last mini-
mum, or still at a high point. If the transition from
KE dominance to RD occurs at a point that is close
enough to the minimum (and to the left of the
maximum), then the field will be trapped even in
a shallow minimum since it has lost a huge amount
of KE.

The conclusion of this analysis is that as the field
acquires a large amount of KE the latter seeds the ele-
ments of its own destruction by the lurking radiation. In
the KE domination epoch the field does not move much
per order of magnitude of dissipated KE, and in the
radiation dominated epoch its motion is clearly bounded.
Thus if the potential is steep enough, so that enough
kinetic energy is acquired in the initial stage, and friction
becomes important early on, and the difference in eleva-
tion between the starting point and the minimum is large
enough, then with generic initial conditions the field
would be bound.

Obviously the detailed realization of this scenario
depends on the values of the parameters in the potential
and the nature of the specific sources.

III. NUMERICAL EXAMPLES

To verify that our approximations are meaningful, and
to check their range of validity, we have made a series of
numerical investigations. We report here only about some
of them to illustrate some features of the scenario.

For the numerical investigation we have used the fol-
lowing potential for the volume modulus used in [1]:
ale 7 <1 d

—oalAe 7 + W, + Ae 47 | + —,
207 0 > o’

V(o) = 5

(15)

where o = ¢V2/3%_This potential was derived using the
superpotential (coming from flux contributions and non-
perturbative effects)

W(o) = W, + Ae 97, (16)

and the classical tree level Kahler potential. The last term
in Eq. (15) comes from the contribution of an anti-Dbrane
(Dbar brane). We stress that we use this particular poten-
tial merely for the sake of illustration of our mechanism.
Similar results follow for potentials which incorporate
alternatives to the Dbar brane term.

All our numerical investigations were done in the

conventions that M2 = - = 1. We present our results
p 87Gy

in Figs. 2-5. To construct the numerical examples in
these figures we used the following values for our pa-
rameters: a=0.1, A=10, d=3X10"2°, W,=
—2.96 X 10713, For these parameters the potential has a
true minimum at ¢ = 7.06. At the minimum the value of
the potential (the CC) is 6.35 X 107* and the barrier
separating the minimum from the asymptotic region is
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FIG. 2 (color online). A bound case. Shown in the top panel
are fractional densities of potential energy (blue, dark), kinetic
energy (red, medium) and radiation energy (green, light) as a
function of time. KE becomes dominant and then the radiation.
Shown in the bottom panel is the evolution of the field as a
function of time ending in the shallow minimum of the
potential.
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FIG. 3 (color online). A bound case. Shown in the top panel
are the various energy densities (color coded as in Fig. 2) as a
function of the scalar field position. Shown in the bottom panel
is the potential and the starting position of the field. Note that
the scale is logarithmic and that the difference in potential
energy between the starting point and the minimum is about 30
orders of magnitude.
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FIG. 4 (color online). An unbound case: various energy den-
sities (color coded as in Fig. 2) as a function of time. The only
difference from the bound case is where the field ends up at the
end of the radiation dominated epoch. In this case it lands to the
right of the shallow minimum and continues to run on the
potential in a “tracking” solution.

located at ¢ = 7.18. The height of the barrier is
6.28 X 10734,

To illustrate the effect of radiation on the evolution of a
moduli field we present examples of a bound and an un-
bound case. These two examples differ only in initial
conditions. To create these two examples we set the initial
conditions as follows. For the bound case: Vy = (p.4)0 =
5.20 X 107°M;. The corresponding initial value of the
field is ¢y = 2.99, and the velocity of the field vanishes
initially. For the unbound case: Vy = (pna)o =
3.78 X 1072M;. The fractional energy densities created
by our bound solution are shown in Figs. 2 and 3. The first

log;o(V), Q
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FIG. 5 (color online). Window of allowed initial conditions
for bound solutions. Shown in the top panel are the various
energy densities as a function of scalar field position (color
coded as in Fig. 2) for two bound solutions with two different
initial conditions, depicted by solid and dashed curves. In the
lower panel we show the potential as a function of the scalar
field. The dots on the potential are the end points of the two
regions of initial conditions that lead to bound solutions. One of
the regions is around the minimum, and the other is way up on
the potential.
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depicts the value of the field and the fractional energy
densities as a function of time, while the second shows
the same fractional energy densities and the potential as a
function of the field. The four epochs mentioned previ-
ously in this paper are clearly visible in both representa-
tions. The fractional energy densities created by our
unbound solution are shown in Fig. 4. Note that a signifi-
cant fourth epoch is not present in this example. The field
lands to the right side of the barrier, where a scaling
solution quickly takes over.

The addition of radiation to our model created an extra
window, (2.99, 3.95), of initial conditions which lead to
bound solutions. The other interval, (7.04, 7.18), remains
relatively unchanged with the addition of radiation. The
two intervals of bound solutions can be seen in Fig. 5.

IV. DISCUSSION AND OUTLOOK

We have proposed a scenario for resolving the cosmo-
logical moduli stabilization problem. We believe that we
have identified the basic ingredients of the required solu-
tion. The application of the idea may vary according to
the detailed models of string compactifications.

Obviously this preliminary investigation needs to be
followed by detailed and quantitative exploration, includ-
ing various sources, a systematic study with a wider range
of parameters and potentials, and a quantitative analysis
of stable potentials. In particular, the dependence of the
range of bound initial conditions on the parameters of the
potential such as the width and height of the minimum
and barrier.

Having found cosmologically stable models, it is clear
that string models become less constrained. This provides
a new perspective on the approach to string model build-

PHYSICAL REVIEW D 70, 126012 (2004)

ing. Previously, because the theory was highly con-
strained, the hope was that only a single model, or a
single class of models will satisfy the necessary condi-
tions. Now the theory needs to be constrained as much as
possible by data and phenomenological bottom-up
constraints.

As a final comment we wish to point out that the
presence of the fourth epoch (of potential domination)
does not necessarily imply slow roll inflation; however,
constructing models in this framework which produce a
sufficient amount of primordial inflation is straightfor-
ward. First, one must set the parameters of the potential
so that the barrier is very flat (i.e., Y- < 1) at the top. Such
an example has been produced recently using the imagi-
nary component (the axion) of the volume modulus, ¢
[14]. Second, one must set the initial conditions of the
model so that the radiation places the field close to the top
of the barrier. It has not yet been possible to find a model
which is not so severely fine tuned so that it may survive
quantum corrections. We are currently investigating this
issue and hope to report our results in a future publica-
tion. Other models of inflation from a flat maximum of
the potential of stabilized moduli were introduced in
[15,16]. Additional regions in the discretuum may allow
the construction of other types of inflationary models.
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